


 

 
 
 
 
 
 
 
 
Abstract- Wearable technology has added a whole new 
dimension to already rich field of personal gadgets. It was the 
mobile phone which truly made gadgets personal. With so 
many services built around mobile phones, the market has 
opened up for a whole new personalization experience 
involving wearable technology. The fabric sensors that sense 
stretch, pressure, bend and even the direction of bracing on the 
body are now combined with wearable microcontrollers such as 
flora and lily pad. The connections between them are being 
made from conductive threads which curves along with the 
fabric. In this paper we will take a peek as to how different 
teams have applied the rich knowledge of wearable 
technologies to achieve their goals. 
 
Index Terms—Wearable, Smart Fabrics, Body Area 
Network, sensors, Accelerometers, SAT (Sensor Activation 
Table) 

1. INTRODUCTION 
An E-textile also known as smart garments or smart textiles are 
a class of fabric in which all the electronics and 
interconnections are woven onto the fabric itself and can 
interact with the environment and there is an elimination of 
wires and hard and complex electronic components. . The 
Fabric sensors are called as smart because it sense and react to 
environmental conditions or stimuli, such as those from 
mechanical, thermal, chemical, electrical, magnetic or other 
sources. The smart textiles are integrated in almost all the fields 
of applied sciences such as electronics, material science, optical 
fiber, organic chemistry, artificial-intelligence, Biotechnology, 
aviation hydraulics, telecommunication etc. In this era the smart 
textiles also referred as tex-tronics, which means the production 
of intelligent textiles materials incorporated with microchips, 
microprocessors or active sensory micro devices. 
Miniaturization of electronic components made it possible to 
create smaller and smaller sensors which can be worn all the 
time. The tex-tronics consist of four main components: 
The first is the textile sensors like pressure, stretch, 
accelerometer etc. which is used to monitor any physiological 
variable or any other variables like heart or breathing rate. The 
second component is a family of conductive elastic yarns, 
which are building blocks in for example sensors and 
interconnects. These sensors consist of conductive nano-
composite elastomeric polymers that exhibit changes in 
electrical conductivity as the material is stretched or under some  
deformation. The last group of components is conductive 
ribbon that attach to standard electronic connectors. 
 

 
 
                  
 
 
 

 
 
But the question arises how to incorporate all the sensors into 
the clothing and make it smart textiles. The figure 1 shows the 
steps for incorporating smartness into the clothing 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                       Figure 1: Fiber to Smart Fabric 
The number and the variety of smart textiles and wearable 
devices has increased significantly over the past few years, as 
they provide health monitoring, human comfort and day to day 
monitoring of the user activities. Smart textiles are not 
restricted to apparels and clothing but also extended in many 
other applications like robotics, medicines, automobiles, 
surgery etc. The importance of these materials is so intense that 
they act as saving material in the combat zone for example in 
the military battleground the smart garment can change color to 
produce camaflogue effect for protection from enemy. It is also 
widespread in many applications like: 

 Airplanes (e.g. in manufacture of flaps found in 
aircraft wings) 

 Space research (e.g. special spacesuits designed for 
astronauts) 

 Comfort wears (e.g. fabrics which can maintain body 
temperature) 

 Sports (e.g. fabrics which can make athletes feel 
comfortable even in stretched body conditions) 

 Biomedical field (e.g. measuring physiological 
parameters like breathing rate, respiration rate, ECG, 
muscle activity etc.) 

 
The advent of technology and the ease of the availability of 
smart sensors makes it easy for monitoring and logging of the 
life activities. People are keeping track of everything from the 
number of calories burnt in a day to receiving a phone call by 
touching the garment as implemented in the jacquard project 
which is a joint venture by Google and Levis The smart textiles 
can be made by incorporating smart materials (piezoelectric, 
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Thermoelectric etc.) electronic sensors and communication 
equipment into the many conductive fibers and yarns. 
Electronic circuits can be built entirely using textiles to 
distribute data, power transmission and storage etc. The 
interconnection or communication between different 
components making up a smart textile system is mainly realized 
by electro-conductive yarns woven into textiles [42], to form a 
bus structure (Figures 2). 
 

 
 

Figure 2: Electro conductive ribbon sample [42] Reprinted 
from http://www.titvgreiz.de, with permission of TITV 
Greiz. 
 
 In this paper we discuss about the different research projects 
on e-textiles and classification of different types of fabric 
sensors and different sensor locations for capture human motion 
and the sensor data which is collected from the different sensors 
to be used further for the classification of human activity using 
Machine learning. 

3. CLASSIFICATION OF SENSORS 
 

 Pressure Sensor 
The sensor is based on the Piezo-resistive effect, where the 
electrical resistance of a material changes under mechanical 
pressure. This sensor can be created using velostat as a semi 
Permeable layer between two pieces of conductive fabric to 
create pressure on it.  
 

 
 

Figure 3: The construction of a fabric pressure sensor with 
three layers (Reference 26) 

 
 Stretch Sensor 

This sensor shows Piezo-resistive properties when deformation 
is applied that depends on the stretching of the fabric. As the 
stretch sensor is stretched the resistance gradually increases or 
decreases. These sensors are made from a conductive fabric. It 
is possible to manufacture them from a non-conductive fabric 
depending on the specific application needs. It is used to 
monitor human body motion and shape. 

 
                
               Figure 4: Sensor for measuring stretch [45]. 
 

 Bend Sensor 
This bend sensor reacts (decreases in resistance) to pressure, not 
specifically to bend. But because it is sandwiched between two 
layers of neoprene (rather sturdy fabric), pressure is exerted 
while bending, thus allowing one to measure bend (angle) via 
pressure. It is used for measuring the bend of human joints when 
attached to the body. It is sensitive enough to register even 
slight bend and has a large enough range to still get information 
when the limbs are fully bent. 
 

 
 
Figure 5: A textile bend sensor created is using conductive 

fabric and neoprene 
 

 A/M/G Sensor 
It is a high precision 3-axis Accelerometer, Compass sensor, in 
which a classic 3-axis accelerometer, tells which direction is 
down towards the Earth (by measuring gravity) or how fast the 
board is accelerating in 3D space. The other is a magnetometer 
that can sense where the strongest magnetic force is coming 
from, generally used to detect magnetic north. 
 

  
 

Figure 6: Flora A/M/G Fabric sensor 
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 BIO Sensors 

Wearable monitoring devices allows the continuous monitoring 
of physiological parameters and it also temporarily store the 
physiological data and then periodically upload the data to the 
server and send the data to the doctor for the diagnosis of the 
disease. There are number of wearable biosensors are available 
today such as: 

 Helmet for the treatment of the depression 
 Prevention of bed sores by smart clothing 
 Smart clothing for premature babies 
 Smart shoes 
 Measuring stress with t-shirt 
 Smart clothing to monitor children health 

status 
 Heart health by smart vest 
 Smart socks 
 Digital clothing that measures mental 

conditions. 
 

 
 

Figure 7: System Architecture with Smart shirt 
 
4.  WEARABLE TECHNOLOGY FOR HUMAN POSTURE 

DETECTION 
Wearable devices have gained attention over the past few years 
by the various industries for everyday use. Technological 
developments have assisted athletes, military soldiers and 
physicians to track functional movements, and measure bio-
vital markers to maximize performance and public safety while 
minimizing the potential for accidents [1]. Using wearable 
technology Maria Cornacchia et al. [2] had done survey on 
activity detection and classification covered a variety of sensing 
methods, including accelerometer, gyroscope, pressure sensors, 
stretch, bend, twist sensors and camera systems. In addition to 
the type of sensors and type of activities classified, they provide 
details on the body area network where the devices may be 
placed or mounted on the human body in a particular position. 
There is a large body of work using A/M/G sensors for activity 
classification. Accelerometer-based systems have been 
proposed for fall detection [3-7]. There are systems using single 
device accelerometer-based system [8-11] and those fusing 
several sensors [12-13] to detect ambulatory-type activities. 
Others are performing posture recognition [14].  
Many activity classification algorithms have been predicted for 
Android or other smartphone platforms using only 

accelerometer data [15–19]. Accelerometer-based systems are 
used in [19] and [20] to distinguish between walking, running, 
cycling, and driving. Accelerometers have also been used in the 
activity classification of workout [21]. Various algorithms have 
been suggested by various authors for the identification of 
human posture detection Stephen et al. [22] and W. Tang [23] 
has offered different classification schemes and feature 
extraction methods to identify the different activities from 
arrange of different datasets and compared the classification 
accuracy for each feature set across different combinations of 
three different accelerometer placements. Other techniques also 
have been used for the classification of data from the wearable 
sensors like support vector machine, hidden Markov model, 
Random Forest and artificial neural network to recognize 
different body activities [24-27]. Using above all the methods 
the performance have been achieved till 95% and performance 
can be increased by using other features, such as age, weight, 
statistics of acceleration, physiological measurements of the 
subject, during a specific activity etc. can also be taken into 
consideration [24-28]. Various other techniques have used to 
automatically classify human body postures like Singular Value 
Decomposition (SVD), Multiscale Entropy, Fuzzy Logic, 
Naïve Bayes etc. [29-31].The Figure 8 shows the placements of 
sensors employed on the human body for the detection of 
human motion in the survey. As discussed in [31] activity 
classification vary from person to person according to its BMI. 
Using only accelerometer data is not sufficient for the activity 
classification, many others sensors to be needed for the more 
accuracy. 
 

 
 

A-Waist, B- Right Thigh, C-Left Thigh, D-Right wrist, E-Left 
Wrist, F-Right Arm, G-Left Arm, H-Chest, I-Right Ankle, J-left 
Ankle, K-Right foot, L-Left Foot, M-Head 
 
Figure 8: Body Area Network: Sensor Locations Employed 
 
4.1 METHODS FOR THE CLASSIFICATION OF HUMAN 

ACTIVITY DATA 
 
The most important characteristic to be considered in building 
a system for recognition or classification of human physical 
activity is the choice of sensors. Wearable sensors should be 
small and light weight and comfortably to be worn. In the 
previous sections we have discussed about the various sensors 
which can be used and implement machine learning algorithms 
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in it. Various papers have used accelerometer sensors [11-25] 
for detecting the ambulatory activities. The data which is 
collected from the sensors can be used for applying various 
machine learning algorithms. Every machine learning 
workflow begins with three questions: what kind of data to be 
used, what insights do you want to get from it and how and 
where those insights be applied. The answers to these questions 
help to understand what kind of learning to be used whether it’s 
a supervised or unsupervised learning. 
Few steps to be followed for testing and training the data taken 
from the sensors as shown in Figure 8 
Step 1: Load the data 
To load data from the sensors we do the physical activities like 
sitting, standing, walking after the sensors are worn. Repeat the 
steps until we have enough data for each activity for training. 
Compile the data in Sensor Activation Table or in a Matrix form 
and do the necessary changes using different techniques to 
improve the accuracy. Figure 9 shows the steps to be followed 
for the data classification. 
 
 

 

 

 
 

Figure 9: Flow Diagram for the data classification 
 

We store the labeled data sets in a text file. Machine learning 
algorithms aren’t smart enough to tell the difference between 
noise and valuable information.  Before using the data for 
training, we need to make sure it’s clean and complete. 
Step 2: Pre-process data 
For the pre-processing, we check for outliers- data points that 
lie outside the rest of the data and also for missing values but 
ignoring the missing values will reduce the size of the data. 
Divide the data-set into two parts and part of the data will be 
used for testing and rest of the data for training to build the 
models also known as cross validation technique. 

Step 3: Feature Selection and Extraction 
This method turns the raw data into information that machine 
learning can use them. Table 3 shows the feature extraction 
methods used for various postures. Allen et al [11] have used 
feature vectors which include the signals from all three axes of 
both the gravity and body acceleration components. Most of the 
studies have used frequency-derived features employing an 
FFT or parameters such as averages or correlations calculated 
over long time-windows [23]. Although the choice of features 
is an important factor, and different researchers may pursue 
different approaches for their identification and computation 
[21].Simple statistical methods are also used for the activity 
detection like variance, Standard Deviation, Mean value, 
Correlation etc. [17, 22, 25] 
Step 4: Build and Train the model 
Need to choose the learning approach for building a model. 
Different authors have used different classifiers for the human 
activity classification. Selecting a machine learning algorithm 
is a trial and error process. It’s also a trade-off between specific 
characteristics of the algorithms, such as:  
• Training Speed  
• Memory usage  
• Accuracy  
Many algorithms have been used for the posture detection 
Naïve Bayes, k-NN, SVM, Decision Tree, HMM, GMM etc.  
K-Nearest Neighbor (k-NN) classifiers, work directly on the 
geometrical distances between feature vectors from different 
classes whereas  SVM classifies the data by finding the linear 
decision boundary that separates all data points of one class 
from those of the other class. Naive Bayes is a probabilistic 
technique that classifies new data based on the highest 
probability of its belonging to a particular class. Finally the 
ANN is a model and feature based approach on specification, 
model checking and testing. Table 2 summarizes the 
information which includes, as for sensor location, selected 
features, number of activities and tested subjects; accuracy of 
classification. It observed that SVM shows the maximum 
accuracy for the data classification. 
 
6. CONCLUSION 
The information presented in this review paper is just the tip of 
the iceberg. There are much complex projects being undertaken 
which would require an entire paper to discuss. The Google and 
Nike's joint venture project named jacquard is one such 
example. The applications of wearable technology combined 
with machine learning is the most challenging and yet 
promising field of study. Training a machine to classify itself 
has inherent challenges when it comes to quality of data 
involved. Above this, the analog data produced by fabric 
sensors and their sensitivity to different changes could bring 
down the quality of data. It will be technically challenging to 
handle both complexity in a single system and orchestrate 
controlled input and output in order to achieve a well-defined 
goal. The combination of fabric sensors, wearable computers 
and machine learning is going to open up a whole new field of 
analysis which can enrich lives.  

Proceedings of the International Conference on Intelligent Sustainable Systems (ICISS 2017)
IEEE Xplore Compliant - Part Number:CFP17M19-ART, ISBN:978-1-5386-1959-9

978-1-5386-1959-9/17/$31.00 ©2017 IEEE 350



 

 
Table 2: Related Work for human posture detection using various sensors 

Reference Placement 
of Sensor Features  Detected Activities Sensor 

Type 
No. of 

Sensors No. of Subjects  Approach 
 

Accuracy 

Allen et al 
[33] Waist 

Body 
Acceleration 
Components, 
Gravity 
Components,  

 Sitting, standing 
,lying) sit-to-stand, 
stand-to-sit, and 
walking) etc. 

Acceleromet
er 3 6 GMM 

 
 
91.3% 

Littman et 
al 

[34] 
  NA 

Standard 
deviation, Energy 
distribution 
Correlation 
coefficients 

Walking, sitting, 
watching TV, 
running, eating, 
reading etc. 

Acceleromet
er 5 NA 

Naive Bayesian k-
NN SVM Binary 
decision 

Approx.  
90-98% 

Seon-Woo 
Lee et al 

[36] 

Waist, 
Thighs 

Raw data 
Standard 
deviation 
Derivative 

Sitting, Standing, & 
Walking behaviour 

2D acc. 
gyro, 
compass 

3 8 Threshold based 

 
92-95% 

Enrique 
Garcia et 

al 
[35] 

Wrist 
State Transition 
Probability 
Distribution 

Long-term activities 
(Shopping, 
Showering, Dinner, 
Working, etc. 

Wrist Watch 
Acceleromet
er 

1 5 

Hidden Markov 
Models, 
Conditional 
Random Fields 

 
65-75% 

Wenlong 
Tang et al 

[23] 
Sole &Heel 

Mean value, 
Standard 
Deviation, 
entropy 

Sit, Stand, Jog, Cycle 
Pressure 
Sensor, 
Acce. 

5 9 SVM, MLP 

96-98% 

Attalah et 
al 

[38] 

Waist, 
Thighs 

Mean Square 
Error 

Sitting ,lying, 
standing and walking 
speed 

Acceleromet
ers 3 5 Extended Kalman 

 Filtering 

80-92% 

Mannini et 
al [37] 

Waist, 
Arms, legs 

Dynamic time 
 wrapping 

Sitting, standing, and  
walking behaviour 

Acc., gyro, 
Magnetomet
ers 

4 or more 8 HMM 
92-98% 

 Bao et al 
    [39] 

4 limbs and 
the right hip 

Standard 
deviation Energy 
distribution 
Entropy 
Correlation 
coefficients 

Walking, sitting, 
running, bicycling. 
Stretching, Lying 
down and relaxing  

2D 
acceleromete
r 

5 20 

Naive Bayesian k-
NN Binary 
decision 
ANN 

 
84% 

Kristof 
Van et al 
 [40] 

Connected a 
pair of pants 
with 
acceleromete
rs to a laptop  

Standard 
deviation FFT 
coefficients 
Derivative 

Sitting, Standing, 
Descending stairs, 
walking etc. 

2D 
Acceleromet
er 

1 NA ANN 

 
42-96% 
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Chamrouk
hi  
 et al 
[24] 
 

Chest, 
Thigh, 
Ankle 
 

Probability 
 

Stairs, Ascent and 
Descent, Walking, 
Standing up, Sitting 
on ground etc. 

Acceleromet
er 3 10 

HMM, K-NN, 
Naïve-Bayes, 
SVM 

 
 
80-95% 

Edward S 
 [41s] 

heel, heads 
of metatarsal 
bones, and 
the hallux 

Signal mean, 
variance, entropy, 
energy, pairwise 
axis correlation 

Sitting ,standing 
postures, walking, 
running, stair 
ascent/descent etc. 

Pressure 
Sensor and 
Acceleromet
er 

5 9 SVM 

 
95.2% 

Yuchuan 
Wu a et al 
[49] 

Waist 
Discrete Wavelet 
Transform & 
IDWT 

standing, jumping, 
sitting- down, 
walking, running, and 
falling performed 

Tri-axial 
Acceleromet
er 

1 13 

Wavelet-based 
principle 
component 
analysis, SVM 

95.25 and 94.87% 

Congcong 
et al 
[50] 

Cushion 
Seat N/A 

Proper Sitting, Lean 
Left , Lean Right, 
Learn Forward, Lean 
Backward 

Pressure 
Sensor 
Array 

12 4 

Decision Tree 
(J48), (SVM), 
(MLP), Naive 
Bayes, and (k-
NN) 

99.47% 

Roland et 
al 
[51] 

Chair Median Values Different sitting 
positions 

Force and 
Acceleration 
Sensors 

16 41 
SVM, Neural 
Network, Random 
Forest 

81% and 98% 

Pierluig et 
al 
[52] 

N/A 

Mean Value, 
RMS Value, 
Standard 
Deviation 

Stairs, Walking, 
Talking, Standing, 
Working PC 

Bi-axial 
Acceleromet
er 

5 14 Random Forest 

94% 

Long Chen 
et al [53] 

left thigh, 
right arm, 
right ankle 
and 
abdomen 

Body 
Acceleration 
Components, 
Gravity 
Components 

Sitting, Sitting Down, 
Standing , Standing 
up, Walking 

Acceleromet
er 4 4 SVM, HMM, 

ANN 

92-99% 

Yuchuan 
Wu a et al 
[49] 

Waist 
Discrete Wavelet 
Transform & 
IDWT 

standing, jumping, 
sitting- down, 
walking, running, and 
falling performed 

Tri-axial 
Acceleromet
er 

1 13 

Wavelet-based 
principle 
component 
analysis, SVM 

95.25 and 94.87% 
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